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Abstract
Purpose Bispecific antibodies (BsAbs), capable of targeting two antigens simultaneously, represent a significant advance-
ment by employing dual mechanisms of action for tumor suppression. However, how to pair targets to develop effective and 
safe bispecific drugs is a major challenge for pharmaceutical companies.
Methods Using machine learning models, we refined the biological characteristics of currently approved or in clinical devel-
opment BsAbs and analyzed hundreds of membrane proteins as bispecific targets to predict the likelihood of successful drug 
development for various target combinations. Moreover, to enhance the interpretability of prediction results in bispecific 
target combination, we combined machine learning models with Large Language Models (LLMs). Through a Retrieval-
Augmented Generation (RAG) approach, we supplement each pair of bispecific targets’ machine learning prediction with 
important features and rationales, generating interpretable analytical reports.
Results In this study, the XGBoost model with pairwise learning was employed to predict the druggability of BsAbs. By 
analyzing extensive data on BsAbs and designing features from perspectives such as target activity, safety, cell type specific-
ity, pathway mechanism, and gene embedding representation, our model is able to predict target combinations of BsAbs with 
high market potential. Specifically, we integrated XGBoost with the GPT model to discuss the efficacy of each bispecific 
target pair, thereby aiding the decision-making for drug developers.
Conclusion The novelty of this study lies in the integration of machine learning and GPT techniques to provide a novel 
framework for the design of BsAbs drugs. This holistic approach not only improves prediction accuracy, but also enhances 
the interpretability and innovativeness of drug design.
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Introduction

Malignant tumors represent a major global health chal-
lenge, often culminating in mortality due to the limitations 
of conventional treatments like surgery, radiation therapy 
and chemotherapy (Obradovic 2023). Fortunately, immu-
notherapy represented by immune checkpoints such as 
PD-(L)1, has emerged as a revolutionary approach that aims 
to inhibit immune checkpoints (Ren et al. 2020), thereby 
activating the immune system and enhancing its capacity 
to recognize and eradicate tumor cells (Teige et al. 2019). 
In recent years, monoclonal antibody (mAb) therapies have 
been widely adopted in cancer treatment, with combination 
therapies further enhancing efficacy and maintaining man-
ageable safety profiles. However, the long-term efficacy of 
mAbs is limited by complex resistance mechanisms in the 
tumor microenvironment. For instance, in patients treated 
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with PD-1 antibody, other immune checkpoints are signifi-
cantly up-expressed and cause T exhaustion, leading to drug 
resistance (Zhou et al. 2023a, b). As BsAbs can directly 
target immune cells to tumors, or simultaneously target mul-
tiple tolerance pathways, drug resistance and severe adverse 
reactions are greatly reduced. Besides, BsAbs offer greater 
clinical administration convenience and potential synergis-
tic effects superior to mAb combination therapies. BsAbs 
have triggered a current surge in next generation anti-tumor 
drugs.

Several BsAbs have successfully been approved, shar-
ing common characteristics such as target specificity to cell 
types (tumor cells, endothelial cells, and immune-tolerant 
 CD8+T cells) prevalent within the tumor microenviron-
ment while exhibiting lower expression in normal tissues, 
thereby ensuring a higher safety margin. These BsAbs ther-
apies encompass various strategies, including: (1) tumor-
associated antigen (TAA) coupled to T cell activators (e.g., 
glofitamab (Shirley 2023) targeting CD20 and CD3, relying 
on the high expression of CD20 on tumor cells to cross-
link antibodies into clusters, enhancing the activity of CD3, 
thereby improving the ability of T cells to kill tumor cells); 
(2) dual immune checkpoint inhibitors (ICI) (e.g., AK104 
(Keam 2022) targeting PD-1 and CTLA4 expressed sin-
gly/doubly on T cells, dual blockade of immune tolerance, 
restoring T cell exhaustion); (3) combinations of immune 
checkpoint inhibitors with anti-angiogenesis antibodies 
(e.g., AK112 (Zhao et al. 2023) targeting PD-1 and VEGF, 
inhibiting tumors through blocking immune tolerance and 
anti-angiogenesis mechanisms); (4) dual-targeting TAA 
(e.g., amivantamab (Chon et al. 2023; Syed 2021; Vyse and 
Huang 2022; C. Zhou et al. 2023a, b), a BsAbs targeting 
EGFR and c-MET, was approved in 2021 for the treatment 
of Non-small cell lung cancer (NSCLC), bridging two anti-
gens expressed singly/doubly on tumor cells, simultaneously 
blocking two tumor growth signaling pathways).

The development of BsAbs still faces many challenges, 
especially how to identify target pairs to achieve synergistic 
effects, while considering whether there are optimal strate-
gies to minimize the toxicity of BsAbs (Thakur et al. 2018). 
The current focus in the development of BsAbs is skewed 
towards leveraging established monoclonal antibody targets, 
either already approved or in clinical trials. However, how 
to predict the success rate of target combinations for BsAbs, 
thereby reducing the cost of trials, may be a current chal-
lenge in the pharmaceutical industry. Besides, how to com-
bine different targets within a bispecific drug to achieve the 
best efficacy and safety will be the key issue that researchers 
need to consider.

This endeavor necessitates a deep understanding of 
the spatial and temporal expression characteristics of 
targets within the tumor microenvironment, a task for 
which single-cell RNA sequencing (scRNA-seq) offers 

unprecedented insights into gene expression profiles in the 
tumor microenvironment at the level of individual cells 
(Vallejos et al. 2016; Van de Sande et al. 2023). Despite 
the growing body of research on BsAbs in tumor immu-
notherapy, a direct integration of scRNA-seq data with 
bispecific drug design remains largely unexplored.

The drug discovery and development process is remains 
lengthy, expensive, and with a high failure rate. Fortunately, 
the advent of artificial intelligence technologies, coupled 
with the utilization of large datasets generated by various 
high-throughput techniques, is streamlining research and 
development efforts, thereby expediting the delivery of new 
drugs to patients (Liu et al. 2021). Computational techniques 
such as machine learning and deep learning have been 
widely applied in drug development processes. Innovations 
include machine learning frameworks like iBCe-eL that 
combines extremely randomized trees (ERT) and gradient 
boosting (GB) classifiers (Manavalan et al. 2018) for the 
prediction of B cell epitope, and novel approaches such as 
using Bayesian models for high-affinity single-chain variable 
fragments (scFvs) library design (Li et al. 2023). Tools like 
ABlooper (Abanades et al. 2022) for the structure prediction 
of antibody complementarity determining regions (CDRs) 
loop, machine learning classifiers for designing antibody 
humanization to reduce immunogenicity (Marks et al. 2021), 
Parapred (Liberis et al. 2018) employing convolutional and 
recurrent neural networks to predict antibody–antigen bind-
ing sites, and mmCSM-AB (Myung et al. 2020) for assessing 
the impact of multiple mutations in antibodies on antigen 
binding affinity illustrate the diverse applications of AI in 
enhancing targeting accuracy and efficacy in drug devel-
opment. Despite limitations such as sample size and the 
scarcity of large datasets, computational designs have not 
been widely utilized in the development of BsAbs. Nonethe-
less, several researchers have begun to apply computational 
models, including machine learning, to BsAbs development, 
making significant strides. Baker et al. (2019) reported on 
the development of an improved nonreduced peptide map 
method coupled with machine learning to enable rapid iden-
tification of disulfide bonds and cysteine-related variants in 
IgG1 knob-into-hole BsAbs. Multi-scale model calculations 
have also been used to simulate the spatio-temporal dynam-
ics of three-body interactions among BsAb, CD3 and TAA 
to maximize drug efficacy and avoid off-target effects (Su 
et al. 2024). In addition, computational and rational engi-
neering were used to design heavy chain/κ light chain inter-
face for expressing fully BsAbs (Froning et al. 2017). The 
use of molecular modeling has improved the stability of the 
T receptors, allowing pairing with antibodies to form bispe-
cifics (Froning et al. 2020). However, these studies have 
not focused on the target selection for bispecific antibody 
therapeutics.
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In the past, integration of machine learning with drug 
design, it was usually only possible to provide the final pre-
diction results, but there was a lack of interpretable expla-
nations. This makes it difficult for drug designers to decide 
whether they should refer to the results of the machine learn-
ing models. Generative Pretrained Transformers (GPT), par-
ticularly the acclaimed ChatGPT, are at the forefront of an 
AI revolution. GPT can leverage its prior pre-trained knowl-
edge and the latest research advancements obtained through 
search augmentation, combined with our task-specific cus-
tom prompts, to generate reports in natural language with 
enhanced interpretability. Chen et al. (2023) evaluated the 
capabilities of ChatGPT in processing and understanding 
biomedical corpora. Yang et al. (2022) developed a pre-
trained deep neural network-based model (scBERT) for cell 
annotation in scRNA-seq data. These studies discuss the 
positive impact of GPT on bioinformatics.

In this study, we proposed a BSPAI (BiSpec Pairwise AI) 
framework to accurately predict the optimal target pairs in 
developing BsAbs. Specifically, our model used gene expres-
sion data from different cell types in single-cell transcrip-
tomics and a list of BsAbs currently approved and in clinical 
trials as inputs. It employed a rich set of biological features 
such as the double positive proportion of target pairs, safety, 
mechanism, gene embeddings, etc., with each target pair as 
the output to predict the likelihood of that pair being suc-
cessfully approved as a bispecific drug. We compared dif-
ferent machine learning models and conducted a detailed 
analysis of each type of biological feature. Ultimately, com-
bining the XGBoost model with pairwise learning achieved 
the best AUC (area under the ROC curve) of 89.29%. Addi-
tionally, we integrated GPT to enhance interpretability. We 
believe that our approach is an effective tool for providing 

candidates for new target combinations, for further valida-
tion in wet lab experiments. The contributions of our work 
are mainly in the following three aspects:

(1) Based on biological knowledge and experience, we pro-
vided a variety of biological features that effectively 
improved the accuracy of bispecific drug design predic-
tion;

(2) We compared different machine learning models, com-
bining the XGBoost model with pairwise learning, 
effectively mitigating the issue of insufficient positive 
samples in clinical trials, achieving the best AUC of 
89.29%;

(3) GPT was utilized to enhance the interpretability of each 
bispecific target pair, thereby aiding decision-making 
for drug developers.

Methods

Task definition

In this segment of the article, we delineate the methodology 
employed in constructing the BSPAI model, a sophisticated 
computational framework designed to refine the selection 
process for bispecific target combinations. Illustrated in 
Fig. 1, the BSPAI model’s primary objective is to adeptly 
forecast the most promising target pair combinations from 
a given set of inputs, culminating in the generation of an 
interpretive report that is both precise and comprehensive.

The BSPAI model operates through a bifurcated 
approach:

Fig. 1  BSPAI consists of two 
phases: Phase 1, feature extrac-
tion and model training, uses 
a dataset of bispecific targets 
to predict target synergy and 
identify key features influencing 
these predictions. In Phase 2, 
enhanced interpretation through 
LLM integration, the model 
synthesizes initial findings into 
a prompt for an LLM, which 
generates an interpretive report. 
This approach combines predic-
tive analytics with contextual 
intelligence, offering a com-
prehensive understanding of 
bispecific target combinations’ 
potential
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Phase 1: Feature extraction and model training

Initially, the model is calibrated using a dataset comprised 
of BsAbs which are either already approved or undergoing 
clinical progress. This phase involves a meticulous extrac-
tion of features across multiple dimensions, facilitating a 
nuanced analysis of potential target combinations. The 
machine learning algorithm employed in this phase is tai-
lored to predict the synergy of two given targets, outputting 
a probabilistic value indicative of their combined efficacy. 
Concurrently, it identifies and highlights the pivotal features 
influencing the prediction, thereby ensuring transparency 
and insight into the decision-making process.

Phase 2: Enhanced interpretation through LLM integration

Subsequently, the model enters an enhancement phase where 
the predictions and key features identified in the initial phase 
are synthesized into a comprehensive prompt. This prompt 
is then inputted into an LLM, which leverages its extensive 
pre-trained knowledge and search engine insights to produce 
an interpretive report. This report not only encapsulates the 
predictive analysis, but also enriches it with contextual intel-
ligence, offering a multifaceted understanding of the target 
combination’s potential.

Dataset collection and preprocessing

To train a machine learning model, we collected single-cell 
RNA-seq datasets of four different types of tumors to ensure 
the richness of the data (detailed in Table 1). We completed 
the preprocessing using Scanpy, which included: standard-
izing data formats from various sources, rigorous quality 
control to remove low-quality cells and contaminants, and 
normalization. We identified highly variable genes to under-
stand cellular heterogeneity. Dimensionality reduction was 
performed through principal component analysis (PCA), 
followed by cell clustering and visualization to identify and 
illustrate cellular subpopulations. Finally, we analyzed gene 
expression patterns within these subgroups to elucidate their 
roles in the tumor microenvironment, informing the design 
of BsAbs drugs.

Training dataset and pairwise label generation

In the construction of our machine learning model, the 
availability and richness of labeled data serve as critical 
determinants of the model’s performance and its capacity 
for generalization. However, the domain of target combi-
nation in BsAbs drug presents a unique challenge due to 
the relatively limited pool of BsAbs that have progressed 
to clinical stages, and an even smaller subset that has been 
approved. This scarcity of traditional pointwise supervised 
learning samples could potentially compromise the model’s 
training efficacy. To circumvent this limitation, we adopted 
an innovative approach by leveraging the clinical progres-
sion data of bispecific drugs. This strategy enabled us to 
enrich our training dataset through a pairwise comparison 
methodology. Specifically, we assigned higher model scores 
to drugs that have been approved over those undergoing 
clinical progress, and similarly, drugs in advanced clinical 
phases were scored above those in preliminary or preclini-
cal stages. This pairwise scoring mechanism facilitated the 
utilization of available data more effectively, by transform-
ing the inherently limited dataset into a richer, comparative 
training resource. We collected clinical progress data on 791 
bispecific drugs targeting tumor indications (Supplementary 
Table 1). These bispecific drugs span across 5 different clini-
cal phases, as detailed in Table 2.

Feature engineering

To ensure the effectiveness and high accuracy of machine 
learning models in predicting target combinations of BsAbs, 
this study constructed features from multiple biological per-
spectives. The construction of all these biological features 
aims to comprehensively assess the potential anti-tumor 
effects and safety of BsAbs through different biological and 
data-driven methods. The construction of features relies on 
rich biological data, including gene expression data, pathway 
data, etc. These feature groups include:

Safety‑based feature group

To assess the safety implications of using combined tar-
gets, we computed the harmonic mean of the differences 

Table 1  Datasets summary

Tumor type Cell number Patient 
number

NSCLC 208506 58
Pancreatic cancer 308181 27
HNSCC 149609 18
Liver cancer 42762240 14

Table 2  Summary of clinical progress

Number Clinical progress

1 Approved, NDA/BLA
2 Phase 3, 2/3
3 Phase 1, 2
4 Preclinical, IND application
5 Discontinued/pending
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in average gene expression between cancerous tissue and 
adjacent normal tissue. This calculation provides a nuanced 
safety score scoresafe , with higher values indicating a pref-
erable safety profile. The formula for this calculation is as 
follows, where x and y represent two targets:

Target mechanism of action‑based feature group

This feature group explores the synergistic potential of tar-
gets by analyzing their co-occurrence within shared bio-
logical pathways, including those cataloged in the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathways 
and Gene Ontology (GO) annotations. By aggregating data 
on pathway affiliations from comprehensive databases, we 
calculate a feature score based on the frequency of gene pair 
co-occurrences within these pathways, providing insights 
into their collaborative mechanisms of action.

Gene embedding representation‑based feature group

Drawing on the Gene2Vec (Du et al. 2019) methodology, 
akin to the Word2Vec model in natural language process-
ing, gene embedding seeks to understand gene associations 
by representing each gene as a high-dimensional vector, 
revealing the complex regulatory relationships between 
genes. Through this approach, genes exhibiting similar 
expression patterns or functional characteristics are posi-
tioned proximately within the vector space. The Euclid-
ean distance between gene vectors serves as a measure of 
similarity, offering a predictive gauge for the viability of 
combining specific targets based on their gene embedding 
representations:

where x and y are the vectors representing the two targets, 
and n is the dimensionality of the vectors.

Target activity‑based feature group

This category of features was crafted to gauge the expres-
sion levels and the prevalence of positive gene expression 
within specific cell populations, thereby offering insights into 
the gene or target functions across various cell types within 

d = exprtumor − exprnomal

scoresafe =
dx ∗ dy

dx + dy
.

d(x, y) =

√

√

√

√

n
∑

i=1

(xi − yi)
2,

the tumor microenvironment. Key features within this group 
include:

Double positive proportion of bispecific targets in cells: 
This metric evaluates the incidence rate at which both targets 
exhibit positive expression within the same cell, serving as an 
indicator of the targets’ synergistic activity.

Sum of the total positive proportions of each target in cells: 
By calculating the aggregate of the proportions where each 
target is positively expressed in cells, this feature provides a 
measure of the overall target activity.

Minimum of the total positive proportions of each target 
in cells: This feature captures the lesser of the total positive 
proportions of the two targets, reflecting the combined activity 
level of the target pair.

To construct these features, we delved into single-cell tran-
scriptome data, extracting target expression values specific to 
various cell populations. Our analysis particularly focused on 
cell populations pivotal to the tumor microenvironment, such 
as exhausted  CD8+T cells, Tregs, macrophages, and epithe-
lial cells. For each candidate gene, we calculated the average 
expression level across the most significantly expressing cell 
populations, identifying the two populations with the high-
est expression levels for further analysis. Subsequently, we 
determined the total positive proportion for each gene within 
these key cell populations, defining it as the fraction of cells 
exhibiting gene expression levels above a predefined thresh-
old. Additionally, we assessed the double positive proportion 
for each gene pair, quantifying the proportion of cells where 
both genes surpassed the expression threshold. This threshold-
based approach facilitated a rigorous quantification of gene 
activity, enabling a precise evaluation of potential bispecific 
target combinations.

The formula for calculating the total positive proportion 
( Pgene ) for a gene is given by the ratio of cells within a specific 
cluster where the gene’s expression level ( exprgene,i ) exceeds 
a predetermined threshold ( T  ). Here, N represents the total 
number of cells within the cluster, and I is an indicator func-
tion that equals 1 when the gene’s expression in the ith cell is 
greater than T, and 0 otherwise:

Moreover, the double positive proportion (Pgene1,gene2) is 
calculated by identifying cells where both target genes are 
expressed above the threshold, defined by:

Pgene =

∑N

i=1
I(exprgene,i > T)

N
.

Pgene1,gene2 =

∑N

i=1
I(exprgene1,i > T) ⋅ I(exprgene2,i > T)

N
.
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Target expression correlation‑based feature group

We employ the Pearson correlation coefficient to quantify 
the linear relationship between the expression levels of two 
targets within single cells. This statistical metric elucidates 
the degree of correlation, where values near +1 or −1 indi-
cate strong positive or negative correlations, respectively, 
and values close to 0 suggest a lack of linear association. 
Such insights are pivotal for understanding the cooperative 
or independent actions of targets, informing the strategic 
design of therapeutic interventions:

where xi , yi are the expressions of two genes in different 
single cells, and x, y are the mean expressions of the two 
genes, respectively.

Experimental settings

In this study, we embarked on a rigorous evaluation of vari-
ous machine learning models to ascertain their efficacy in 
predicting target combinations. Utilizing a diverse array of 
engineered features, we contrasted the performance of seven 
distinct models: Logistic Regression (Yuan et al. 2022), 
Decision Tree, Random Forest (Fonseca et al. 2024), Gra-
dient Boosting Classifier (GBDT), Deep Neural Networks 
(DNN) (Graves et al. 2020), XGBoost (Chen and Guestrin 
2016) and XGBoost model with pairwise learning. The 
configuration of these models was meticulously optimized, 
with parameters set to ensure both accuracy and efficiency. 
The Decision Tree Classifier was adjusted with a minimum 
leaf node count of 5 and a maximum depth of 10, while 
the Logistic Regression model was fine-tuned with an L2 
regularization coefficient of 0.1 and set to iterate up to 1000 
times. The Random Forest Classifier was deployed with 100 
trees, and the Gradient Boosting Classifier was calibrated 
with a 0.1 learning rate alongside 100 trees. The DNN was 
designed with five fully connected layers (256, 128, 64, 32, 
and 1), using LeakyReLU activation and Dropout for overfit-
ting mitigation, and optimized with Nadam. The XGBoost 
models, both in their pointwise and pairwise variations, were 
set with a learning rate of 0.1, a 100-tree ensemble, and a 
maximum depth of 10.

The pairwise adaptation of the XGBoost model employs a 
loss function that evaluates the predictive accuracy based on 
the relative rankings of target pairs, thereby enhancing the 
model’s capacity to optimize the order among target pairs. 
This method stands in contrast to the traditional pointwise 
technique. Traditional pointwise technique assesses each tar-
get pair’s predictive value in isolation, without consideration 

r =

∑

(xi − x)(yi − y)
√

∑

(xi − x)2
√

(yi − y)2
,

of their interrelations. By prioritizing the relative ranking of 
target pairs, our study effectively expands the usable train-
ing samples.

To ensure the robustness and generalizability of our mod-
els, we implemented a fivefold cross-validation strategy, 
thereby bolstering the reliability of our results across varied 
dataset partitions. AUC served as the principal metric for 
evaluating model performance, providing a comprehensive 
measure of model accuracy.

Integration of GPT with retrieval argument 
generation

This study combines the output results of machine learning 
models with the LLM model through a retrieval argument 
approach, fully leveraging the rich pre-trained knowledge 
within the LLM model and the accuracy of the machine 
learning model to produce bispecific drug target design anal-
ysis results with stronger interpretability. GPT-4 was chosen 
as the optimal LLM model for this task. To enable the GPT-4 
model to better understand the basis of the machine learn-
ing model’s predictions, we discretized the most important 
features used during the machine learning prediction process 
into up to five equal-frequency bins. Specifically, the discre-
tization process involves dividing the range of each feature 
into several intervals with an equal number of observations 
and converting the features into different natural languages 
based on the size of the feature values.

When querying whether two targets can be combined, we 
first retrieve the natural language results of the discretized 
features of these two targets and include the final result of 
the machine learning prediction in the prompt provided to 
the GPT-4 model. This retrieval-enhanced approach allows 
the GPT-4 model to supplement more arguments for the 
result discussion based on the machine learning model’s pre-
diction results. At the same time, we also provided textual 
explanations for the meanings of these features. In addition 
to utilizing the rich pretrain knowledge of the GPT-4 model, 
we also stimulated its ability to invoke search engines to 
obtain the latest target research results by tuning the prompt. 
The complete prompt is displayed in Supplementary Data 
1. Ultimately, GPT-4 outputs the final report by integrat-
ing the important features of machine learning, the predic-
tion results of the machine learning model, the LLM’s own 
pre-trained knowledge, and the latest research progress on 
the target retrieved from search engines. Compared to the 
probabilistic results of the machine learning model alone, 
this approach of combining probabilities, important fea-
tures, and rich arguments can better assist drug designers in 
making informed decisions. The entire framework, which 
includes feature calculation, model prediction, important 
feature identification, and prompt engineering, is referred 
to as BSPAI, and the results section showcases the output 
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results of BSPAI after a combined retrieval of CD274 and 
CTLA4. Supplementary Data 2 shows the machine learning 
results for CD274 and CTLA4 target pair.

Results

Feature ablation study

In our exploration to decipher the contribution of individual 
feature groups to the prediction accuracy of target combina-
tions for BsAbs, we embarked on a series of feature ablation 
studies. These experiments were methodically designed to 
sequentially incorporate each feature group into the model, 
followed by its retraining and evaluation to monitor the 
resultant variation in performance metrics. The outcomes 
of these experiments, depicted in Table 3, illuminated the 
critical influence of diverse biological features on augment-
ing the model’s predictive efficacy.

Initially, employing the double positive proportion feature 
alone yielded an AUC of 54.76%, underscoring the predic-
tive value of the double positive proportion. The results 
also reveal the limitations in predicting cases where the two 
targets are not expressed on the same cell. The subsequent 
inclusion of safety-related features marked a significant leap, 
boosting the AUC to 67.06%, with a substantial improve-
ment of 12.3%. This enhancement accentuates the criticality 
of safety considerations within the drug discovery process 
and the prediction of treatment outcomes. Further refine-
ment was achieved by adding mechanism analysis features, 
leading to a 4.68% increase in AUC, reaching 71.74%. This 
increment highlights the importance of shared biological 
pathways among targets. The incorporation of gene embed-
ding features resulted in a modest yet meaningful increase 
in AUC by 1.98%, achieving 73.72%, indicating the utility 
of capturing complex gene relationships through embedding 
techniques. The notable surge in predictive accuracy came 
with the target expression of single cell, which propelled 
the AUC to 86.19%, an impressive rise of 12.47%. This leap 
signifies the fundamental importance of target expression 
levels of single cell in determining the potential success of 

bispecific drug combinations. This reflects the advantages 
of single-cell transcriptomics sequencing technology, pro-
viding unprecedented levels of detail for understanding cell 
behavior, intercellular interactions, and complex biological 
processes. Especially in the study of the tumor microenvi-
ronment, tumor tissue is not composed of a single cell type, 
but is a complex ecosystem containing multiple cell types 
(such as tumor cells, immune cells, endothelial cells, etc.). 
Single-cell transcriptomics can reveal the gene expression 
characteristics of these different cell types, as well as their 
unique roles in tumor development and treatment response. 
Finally, integrating grouped cell type expression of single 
cell features further refined the model’s accuracy, culminat-
ing in an AUC of 89.29%, an increase of 3.1%. This final 
improvement emphasizes the necessity of analyzing target 
expressions within specific single cell types, particularly for 
targets such as PD-1 and CTLA4, which exhibit pronounced 
expression predominantly within T cells. This part of the 
research highlights the importance of grouped cell type 
expression features of single cell, meaning that the analy-
sis of gene target expression needs to be conducted within 
specific cell populations, rather than a generalized analysis 
across all cell types.

The incremental feature integration strategy employed 
in this study not only methodically enhanced the model’s 
predictive accuracy, but also highlighted the multifaceted 
nature of factors influencing the success of bispecific target 
drugs, from safety and biological mechanisms to complex 
gene interactions and expression dynamics.

In our quest to unravel the hierarchical significance of fea-
tures within the predictive modeling process, we embarked 
on the feature importance analysis. Leveraging the XGBoost 
model, we utilized the “feature frequency” method, which 
quantifies the importance of a feature based on its recur-
rence as a split node throughout the ensemble of decision 
trees. This metric provides a clear indication of a feature’s 
relevance, with those frequently serving as pivotal points 
for decision splits across multiple trees deemed most criti-
cal. Supplementary Table 2 shows the meaning of each 
feature. Figure 2 reveals that target similarity, as deduced 
through gene embedding techniques, emerged as the para-
mount feature, underscoring its vital role in model predic-
tions. Gene embedding draws inspiration from advances 
in natural language processing, utilizing the concept of 
gene co-expression to simulate gene interactions, mirror-
ing the way words associate in context within natural lan-
guage processing. It allows embedding models to capture 
the “context” of genes, akin to word co-occurrence, thereby 
understanding gene expression patterns and their interac-
tions in high-dimensional spaces. By transforming genes 
into numerical vectors, gene embedding encapsulates infor-
mation from gene co-expression networks, offering robust 
support for uncovering gene functions, disease associations, 

Table 3  Results of feature ablation study

Features AUC (%) Improvement (%)

Double positive proportion 54.76 –
+ safety-related features 67.06 12.3
+ mechanism analysis features 71.74 4.68
+ gene embedding features 73.72 1.98
+ target expression of single cell 86.19 12.47
+ grouped cell type expression 

features
89.29 3.1
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and potential therapeutic targets. This was closely followed 
by the safety_score, which encapsulates the potential risk 
factors associated with the bispecific targets. Excellent BsAb 
targets require tumor expression specificity to reduce the 
risk of adverse event (AE) due to on-target off-tumor effects. 
The safety feature is also consistent with the laws of clinical 
practice, where the primary endpoints in a Phase I clinical 
trial are usually safety and initial efficacy. It will be further 
advanced to Phase II/III efficacy validation studies, subject 
to ensuring safety. 

The Pearson correlation coefficient between the two tar-
get genes, indicative of the concordance of their expression 
levels, ranked third in importance. The co-expression feature 
suggests that the biological nature of the synergistic effect 
of BsAb is derived from the co-expression of target pairs 

and the overlap or co-amplification of downstream signaling 
pathways. For example, AK104, which has been successfully 
approved, primarily targets PD-1 and CTLA4 co-expres-
sion on exhausted  CD8+T, and doubly blocks PD-L1/2 and 
CD80/86 to inhibit downstream signaling pathways, thereby 
superimposing stimulated T secretion of IFNγ to kill tumors. 
In addition, CTLA4 pathway can also significantly enhance 
the secretion of IL-2 by  CD4+T cells and promote the pro-
liferation, survival and tumor killer activity of T, NK and 
other immune cells in the tumor microenvironment. Addi-
tionally, the single positive fraction of targets within T cells 
was identified as a key determinant, highlighting the signifi-
cance of target activity within T cells. The single-expres-
sion feature reminds developers of the high heterogeneity 
of target expression in the tumor microenvironment. Again, 

Fig. 2  Feature importance. The vertical axis represents the names 
of various features, ranked according to their importance in the pre-
dictive model, with importance decreasing from top  to bottom. The 
horizontal axis displays the “feature frequency” scores of each feature 

within the XGBoost model, reflecting the frequency of features acting 
as split nodes in the decision tree ensemble, thereby indicating their 
relative importance in the model’s decision-making process. The bar 
chart visually presents the top 40 features and their importance scores
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taking AK104 as an example, in addition to targeting co-
expressed  CD8+ T cells, one arm of AK104 can also target 
single expressed PD-1+CD8+T or single-expressed  CTLA4+ 
 CD4+T cells, which are abundant in the tumor microenvi-
ronment and exert optimal anti-tumor activity by covering 
more effector T cells.

Performance and model comparison

In this study, we evaluated the efficacy of seven distinct 
machine learning models to predict the viability of target 
combinations for BsAbs (Fig. 3). Our investigation com-
menced with an examination of model performance using a 
single feature for assessment. Drawing from extensive drug 
design expertise, we selected “double positive proportion” 
as our feature of interest, which yielded an AUC of 54.76%. 

This result suggests a base performance level, underscor-
ing the feature’s limited applicability primarily to scenarios 
where both targets are simultaneously highly expressed 
within the same cell type. This limitation became apparent 
in need of bridging effect cell to target cells (like CD3 and 
CLDN18.2), necessitating a broader evaluative framework 
incorporating multiple features for a holistic assessment. 
Besides, using only the double positive proportion as fea-
ture, performance can be unstable across different types of 
cancer data (Table 4).

After optimizing machine learning models such as 
logistic regression and decision trees, we observed a sig-
nificant improvement in predictive accuracy compared to 
the single-feature method. Specifically, Logistic Regres-
sion demonstrated a significant uplift, achieving an AUC 
of 78.68%. This enhancement highlights the inherent 

Fig. 3  ROC curves of vari-
ous models (taking NSCLC 
as an example).  The receiver 
operating characteristic (ROC) 
curve is a graphical plot that 
illustrates the performance of a 
binary classification model by 
displaying the trade-off between 
the true positive rate (sensitiv-
ity) and the false positive rate 
(1 − specificity) across a range 
of thresholds. The AUC metric 
quantifies the overall ability 
of the model to discriminate 
between the two classes, with 
higher values indicating better 
performance

Table 4  Performance 
comparison of five-fold cross-
validation in different types of 
cancer

NSCLC non-small cell lung cancer, HNSCC head and neck squamous cell carcinoma

Model name AUC (NSCLC) 
(%)

AUC (pancreatic can-
cer) (%)

AUC (HNSCC) 
(%)

AUC (liver 
cancer) (%)

Single feature 54.76 53.35 49.38 46.60
Logistic regression 78.68 76.81 76.21 76.43
Decision tree 77.00 77.18 76.67 73.38
Random forest 84.93 84.46 83.29 84.22
DNN 86.08 80.78 82.08 79.69
GBDT 86.70 85.36 85.37 86.19
XGBoost 88.83 88.04 88.55 87.61
XGBoost + pairwise 89.29 88.04 88.93 87.79
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advantage of machine learning models over traditional 
statistical methods reliant on a single feature—machine 
learning models integrate multifaceted insights to derive 
a comprehensive conclusion. The application of ensem-
ble learning methods, which amalgamate insights from 
various sub-models including Random Forest, GBDT, 
and XGBoost, marked a further leap in performance. 
The DNN model yielded an AUC of 86.08%, placing it 
between Decision Trees and GBDT models. This outcome 
underscores the challenges in training deep neural net-
works with limited positive samples and highlights the 
effectiveness of ensemble methods in this context. Nota-
bly, the XGBoost model, employing a pointwise approach 
with a cross-entropy loss function, attained an impressive 
AUC of 88.83%. This progression underscores the efficacy 
of ensemble methods in enhancing predictive accuracy 
beyond that of single model approaches. The pinnacle of 
our model comparison was reached with the integration of 
the XGBoost model utilizing a pairwise learning approach, 
culminating in an optimal AUC of 89.29%. This outcome 
validates our hypothesis that considering the ordinal rela-
tionships between different clinical stages—particularly in 
contexts characterized by a scarcity of bispecific drug clin-
ical samples—significantly enhances model performance. 
The pairwise approach, by prioritizing the relative ranking 
among target pairs, emerges as a potent methodology in 
scenarios marked by limited positive samples, offering a 
promising avenue for application in similar research con-
texts. Table 4 demonstrates that our model exhibits high 
predictive accuracy across a variety of cancer types, not 
limited to NSCLC. This suggests the potential for incorpo-
rating datasets from additional cancer types in the future, 
enabling a comprehensive pan-cancer analysis.

This comparative analysis not only delineates the supe-
rior performance of machine learning techniques over tra-
ditional single-feature statistical methods, but also exem-
plifies the potential of considering ordinal relationships in 
enhancing predictive accuracy for target combinations in 
bispecific antibody.

Discretization for enhanced GPT integration

To enable the GPT model to make more matched argumenta-
tive explanations for the output results of the machine learn-
ing model, we converted the features used by the XGBoost 
model during the prediction process into nature language 
and passed them to the GPT model. Due to the context text 
length limitation of the GPT model, we selected the six most 
important and representative features based on the aforemen-
tioned feature importance, along with other various types of 
information, to be communicated to the GPT model.

We adopted a discretization strategy for continuous 
numerical features, segmenting them into intervals to ren-
der them more comprehensible from a natural language 
processing standpoint. The outcomes of this discretization, 
translating numerical data into natural language segments, 
are presented in Table 5. This approach not only accentu-
ates the contributions of individual features to the model’s 
predictive success, but also exemplifies the integration of 
machine learning insights with natural language processing 
capabilities. Through this methodology, we aim to provide 
a nuanced understanding of the model’s decision-making 
process, thereby facilitating the development of more inter-
pretable and actionable insights in the realm of bispecific 
drug design.

Target prediction results

Table 6 shows the list of the top 3 target pairs in each type of 
BsAbs, ranked from high to low according to the predicted 
probability of bispecific target pairs being marketed. Sup-
plementary Table 3 displays the top 100 target pairs ranked 
from high to low according to the predicted probability of 
bispecific target pairs being marketed. Since CD3 (CD3E) 
targets T cells and is a universal type of T cell activator, 
only the top two pairs for all CD3 combinations are shown.

CD274+CTLA4 represents an important target pair cur-
rently under clinical investigation in Table 6. In various can-
cers, including NSCLC and melanoma, immune checkpoint 

Table 5  Results of feature discretization into natural language

Gene embedding similarity Safe score Pearson correlation coefficient Single_ratio_max Double_ratio_max

Very similar
(0–3.67)

Unsafe
(−∞ to −0.0071)

Strongly negative correlation
(−∞ to −0.020)

Low
(0–0.11)

Low
(0–0.00019)

Somewhat similar
(3.67–4.02)

Moderately low safety
(−0.0071 to −0.000073)

Weakly negative correlation
(−0.020 to −0.004)

Moderately low
(0.11–0.24)

Moderately low
(0.00019–0.0015)

Similar
(4.02–4.34)

Safe
(−0.000073 to 0.0012)

Uncorrelated
(−0.004 to 0.004)

Moderate
(0.24–0.45)

Moderate
(0.0015–0.0071)

Dissimilar
(4.34–4.77)

Moderately high safety
(0.0012–0.013)

Weakly positive correlation
(0.004–0.020)

Moderately high
(0.45–0.67)

Moderately high
(0.0071–0.35)

Very dissimilar
(4.77 to +∞)

High safety
(0.013 to +∞)

Strongly positive correlation
(0.020 to +∞)

High
(0.67–1)

High
(0.35–1)
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receptors such as PD-1 and CTLA4 are highly co-expressed 
on immune cells like exhausted  CD8+ T cells. The upregu-
lation of CTLA4 expression is a key mechanism of PD-1 
resistance. Ligands CD80 and CD274 are co-expressed on 
antigen presentation cells. Combination therapy with PD-1 
and CTLA4 monoclonal antibodies (e.g., nivolumab com-
bined with ipilimumab) has been approved, though it has 
been observed to synergistically increase side effects such as 
colitis. BsAbs maintain efficacy while potentially improving 
safety through mechanisms such as reduced CTLA4 activ-
ity and specifically targeting the tumor microenvironment. 
For instance, AK104 (PD-1+CTLA4) has been approved 
for platinum-refractory or metastatic cervical cancer, and 
KN046 (CD274+CTLA4) has entered Phase III clini-
cal trials for pancreatic ductal adenocarcinoma (PDAC) 
and NSCLC. The BsAbs targeting CD274+CTLA4 oper-
ates with one arm targeting CD274 and the other target-
ing CTLA4. Its mechanism of action includes: (1) releasing 
immune suppression on effectors like  CD8+T cells express-
ing both (approximately 28–43%) and single (2–10%) PD-1/
CTLA4, preventing resistance; (2) significantly aggregating 
CTLA4 receptors through CD274 side cross-linking to syn-
ergistically relief exhausted  CD8+T suppression; (3) both 
arms can bridge effector cells, pulling  CD8+T cells closer 
to the tumor, or bridge  CD4+T and DC cells to enhance 
immune synapse formation and antigen presentation; (4) 
utilizing an IgG1 mutant subtype with reduced antibody-
dependent cell-mediated cytotoxicity (ADCC), antibody-
dependent cell-mediated phagocytosis (ADCP) and comple-
ment dependent cytotoxicity (CDC) functions, minimizing 
the risk of NK or tumor-associated macrophages (TAM)-
mediated T cell clearance. Therefore, the predicted target 
pair of CD274+CTLA4 has high druggability, which proves 
the reliability of our model.

CD40+EGFR or CD3+ERBB3 target pairs belong to 
the category of bridging effector cell and target cells, and 
no BsAbs drugs are currently in clinical trials in Table 6. 
ERBB2, ERBB3 and EGFR, all members of the human 

epidermal growth factor receptor family, function as trans-
membrane proteins that, upon binding with growth factors, 
undergo dimerization to mediate signal transduction and 
regulate cell growth, division and repair. These processes are 
intimately linked to the development of numerous cancers. 
A variety of anticancer drugs targeting EGFR and ERBB2 
have been approved, patritumab–deruxtecan (antibody–drug 
conjugate targeting ERBB3) also entered phase III clinical 
trials currently. The results demonstrated promising clinical 
activity of patritumab–deruxtecan across various subgroups 
of breast cancer patients in phase I/II clinical trial, with 
objective response rate (ORR) reach to 36.2%, and median 
overall survival (OS) of 13.7 months. Therefore, ERBB2/3 
and EGFR are ideal tumor-associated antigens, which are 
suitable for binding with T and B cell activators such as 
CD3 and CD40 agonists to construct bispecifics, and kill 
tumor cells by bridging immune cells to tumor. Currently, 
there are no CD3+ERBB3 or CD40+EGFR BsAbs drugs 
in clinical stages or disclosed to be in preclinical research. 
Some studies have revealed that upregulation of ERBB3 is 
a key resistance mechanism to EGFR and ERBB2 targeted 
therapies (Kruser and Wheeler 2010; Leto et al. 2015; Zhang 
et al. 2020), highlighting the importance of developing novel 
therapeutic strategies targeting ERBB3.

ERBB2+EGFR constitutes a TAA+TAA type target 
pair, for which, currently, no BsAbs drugs have entered 
clinical trials (Table 6). Currently, several anticancer mAb 
drugs targeting EGFR or ERBB2 have been approved. For 
instance, monoclonal antibodies targeting ERBB2, such as 
trastuzumab and pertuzumab, are approved to treat ERBB2-
positive breast cancer. Similarly, cetuximab, which targets 
EGFR, has been authorized for treating metastatic colorec-
tal cancer and head and neck cancer, among others. Addi-
tionally, various small molecule inhibitors targeting EGFR 
and/or ERBB2 have been approved for treatment of cancers 
such as NSCLC. In cancers such as NSCLC, EGFR and 
ERBB2 are highly co-expressed and approximately 10–15% 
of patients developing resistance to EGFR-targeted therapies 
exhibit ERBB2 mutations. Anticipating the development of 
such BsAbs, targeting both EGFR and ERBB2 signaling 
pathways could not only synergistically inhibit tumor growth 
and enhance anticancer efficacy, but also effectively prevent 
resistance caused by mutations in either target.

Complete analysis report

After inputting the two targets CD274 and CTLA4 into our 
model BSPAI, the output of a complete analysis report is 
as follows:

The analysis of CD274 (PD-L1) and CTLA4 as dual 
targets for the design of a bispecific antibody drug takes 
into account their individual characteristics, clinical pro-
gress in monoclonal antibody development, and potential 

Table 6  Top3 target pairs of each type BsAbs

Type Gene1 Gene2 Predict score Clinical 
stage

Bridge two cells CD40 EGFR 0.89 0
CD3 ERBB3 0.84 0
CD274 CTLA4 0.79 4

TAA+TAA CD47 ERBB2 0.69 4
EGFR MUC1 0.61 2
EGFR ERBB2 0.57 0

Tumor immuno-
therapy targets

CTLA4 ICOS 0.67 0
PDCD1 TNFRSF9 0.66 4
LAG3 PDCD1 0.58 4
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for combined treatment efficacy based on machine learning 
model features and external literature.

CD274 (PD‑L1)

Clinical progress: PD-L1, targeted by antibodies like dur-
valumab and socazolimab, has shown varied clinical effi-
cacy across different cancer types. For instance, in metastatic 
breast cancer, durvalumab did not significantly improve 
overall survival (OS) in the overall population but showed 
promise in triple-negative breast cancer (TNBC) patients, 
especially those with CD274 gain/amplification. Another 
study on socazolimab for recurrent or metastatic cervical 
cancer demonstrated its safety and efficacy, with a median 
OS of 14.72 months and an objective response rate (ORR) 
of 15.4%. These results underscore the potential of PD-L1 
inhibitors in certain cancers, suggesting a role for CD274 as 
a target in bispecific antibody development.

CTLA4

Clinical advances: CTLA4 inhibitors, such as ipilimumab, 
have established efficacy in melanoma, with a reported 
5-year survival rate of 18.2%. PD-1 inhibitors, targeting 
PD-L1, have been found to be more effective and less toxic 
than CTLA4 inhibitors in melanoma, indicating the impor-
tance of the PD-1/PD-L1 pathway in immunotherapy.

Machine learning model analysis

• Gene2vec score: medium. This suggests a moderate level 
of similarity and potential functional or pathway overlap 
between CD274 and CTLA4.

• Dual target expression double-positive percentage score: 
above average. This indicates a significant portion of 
cells expressing both targets, which is promising for a 
bispecific antibody’s effectiveness.

• Target safety score: low. This presents a challenge, sug-
gesting potential safety concerns due to the expression 
of these targets in non-cancerous tissues.

• Target correlation score: below average. This indicates 
a less than ideal correlation in their expression, which 
might affect the dual targeting strategy’s efficiency.

• Pathway enrichment analysis score: same. This suggests 
that CD274 and CTLA4 function within the same path-
way, supporting the rationale for their combined target-
ing.

• Machine learning model prediction score: 0.93. Ranked 
4 out of 24,753 candidates, highlighting a high potential 
for clinical efficacy in combining CD274 and CTLA4 
targeting.

Conclusion

The combination of CD274 and CTLA4 as targets for bispe-
cific antibody drugs is supported by individual successes in 
monoclonal antibody therapies and the promising machine 
learning model prediction score. The medium gene2vec 
score, above-average dual target expression, and shared 
pathway involvement underscore their potential synergy. 
However, the low target safety score and below-average 
target correlation score present challenges that need to be 
addressed.

Given the efficacy of PD-L1 and CTLA4 inhibitors in 
various cancers, especially in melanoma and certain subsets 
of breast and cervical cancers, a bispecific antibody target-
ing both CD274 and CTLA4 has a strong rationale. The 
key will be to navigate safety concerns and ensure that the 
bispecific antibody can effectively engage both targets to 
improve therapeutic outcomes. Further research and clinical 
trials will be crucial to explore the full potential and address 
the challenges of this innovative therapeutic approach.

Discussion

This study introduces a pioneering approach that seamlessly 
integrates machine learning and GPT techniques to advance 
the design of BsAbs drugs, a crucial area in drug design 
that necessitates the identification of effective target com-
binations. Our methodology commenced with constructing 
pairs of targets from a curated list of hundreds of common 
membrane proteins. This study demonstrates the following 
advantages in addressing similar problems:

(1) Depth optimization of feature engineering: We have 
deeply optimized feature engineering, including mul-
tidimensional features based on target activity, safety, 
type, pathway mechanisms, and gene embedding rep-
resentations, which are more complex and comprehen-
sive than the simpler feature sets.

(2) Pairwise advantages: In the context of selecting target 
combinations for BsAbs, the number of bispecific ther-
apeutics that have progressed to clinical trials remains 
relatively small, and even fewer have reached the mar-
ket. Consequently, traditional pointwise supervised 
learning approaches may encounter challenges due to 
a scarcity of samples. To address this, we leveraged 
the clinical development stages of BsAbs by assigning 
progressively decreasing model scores to drugs based 
on their approval status and clinical phase progression, 
from approved to Phase III, II, I, and preclinical stages. 
This strategy allows for training with a comparatively 
abundant dataset by utilizing a pairwise comparison 
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approach, thereby enhancing the model’s learning 
potential in the context of limited sample availability.

(3) Enhancement of interpretability with GPT: This is a 
significant departure from most previous machine 
learning methods, which often lack sufficient inter-
pretability, whereas understanding the reasons behind 
model predictions is crucial in drug design.

However, this study also has some limitations. This 
study is limited to the BsAbs, with analyses of tri- or tetra-
specific antibodies involving three or four targets, respec-
tively, not yet explored. Future endeavors could extend and 
apply similar biological feature-based approaches to these 
more complex multi-specific antibody. In future work, our 
research will continue to expand and optimize the combined 
approach of machine learning and GPT technology to further 
improve the efficiency and accuracy of bispecific antibody 
drug design. Specific future directions include:

(1) Expansion and diversification of the dataset: We plan 
to expand and diversify the current target dataset used, 
including a wider variety of membrane-expressed tar-
gets, drug clinical data, single cell transcription data of 
more tumors, and proteomics data. This will not only 
improve the generalization ability of the model, but 
also help explore more potential bispecific target com-
binations.

(2) Further optimization of algorithms and feature engi-
neering: XGBoost performed excellently in this 
study, but the DNN model did not meet expectations. 
Compared to tree models such as decision trees and 
XGBoost, DNNs are more sensitive to datasets with 
a smaller number of positive samples, leading to sub-
optimal training outcomes. Despite the provision of 
rich biological features, DNNs did not show a clear 
advantage in extracting non-linear relationships from 
the data, which might be due to tree models being 
more effective in processing these types of features 
and less prone to overfitting. Training DNNs requires 
substantial data and computation, along with meticu-
lous network design and parameter tuning. Even though 
mainstream optimization techniques and overfitting 
prevention strategies were employed, DNNs still strug-
gled to surpass the XGBoost model under conditions of 
limited data. In the future, as more and more BsAbs are 
approved, there will be more opportunities to experi-
ment with deep learning models, especially in integrat-
ing antibody prediction models with LLMs through an 
end-to-end training approach. At the same time, we aim 
to conduct a more in-depth analysis and optimization 
of feature representation to more accurately reflect the 
characteristics and interactions of targets.

(3) In-depth study of model interpretability: Although GPT 
techniques have been used to explain the effectiveness 
of bispecific target combinations, we plan to further 
deepen this area in the future. By collecting data such 
as multi-antibody project reports, the LLM model is 
fine-tuned to further enhance its interpretability in the 
field of bioinformatics.

(4) Experimental validation and preclinical studies: Labo-
ratory validation of high-scoring bispecific target com-
binations predicted by the model, as well as conducting 
preclinical studies to further confirm the efficacy and 
safety of these combinations. Collaborate with experts 
in the fields of molecular biology and clinical research 
to leverage their expertise and techniques to improve 
the overall quality and success rate of drug design.

Gene embedding methods can capture more complex 
inter-gene relationships, and such features rank first in 
feature importance rankings, suggesting that drug devel-
opment researchers should also focus on the gene interac-
tion networks between two targets during drug design. We 
also found that data on the positive proportion of different 
cell types obtained from single-cell data can significantly 
improve performance, indicating that single-cell data, by 
grouping cell types, can provide a finer understanding of 
the expression and mechanisms of targets in various cell 
types within the tumor microenvironment more finely than 
bulk-RNA seq. Safety features are another important con-
sideration. If the safety score is low, careful consideration 
must be given to the drug design, even if expression and 
other indicators suggest high efficacy. For instance, safety 
issues can be collectively addressed by reducing the affinity 
between the antibody and antigen or by reducing the dosage 
during clinical design. Through our efforts, we hope to pro-
vide a stronger, more accurate and more interpretable tool 
for the design and development of BsAbs, thereby helping 
to accelerate the research and development process of new 
drugs and bring more treatment options to patients.

Conclusion

By integrating the XGBoost model with pairwise learn-
ing and GPT technology, we have improved the prediction 
accuracy of target combinations in BsAbs to 89.28%. This 
provides researchers with highly reliable guidance. Addi-
tionally, combining it with GPT enhances interpretability, 
facilitating bispecific drug development researchers to 
understand and make accurate target combination selections 
more effectively.

The abbreviations involved in this article are listed in 
Supplementary Table 4.
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